Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.707
Filtrar
1.
Front Immunol ; 15: 1384406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596681

RESUMO

Introduction: The autoimmune response in type 1 diabetes (T1D), in which the beta cells expressing aberrant or modified proteins are killed, resembles an effective antitumor response. Defective ribosomal protein products in tumors are targets of the anti-tumor immune response that is unleashed by immune checkpoint inhibitor (ICI) treatment in cancer patients. We recently described a defective ribosomal product of the insulin gene (INS-DRiP) that is expressed in stressed beta cells and targeted by diabetogenic T cells. T1D patient-derived INS-DRiP specific T cells can kill beta cells and are present in the insulitic lesion. T cells reactive to INS-DRiP epitopes are part of the normal T cell repertoire and are believed to be kept in check by immune regulation without causing autoimmunity. Method: T cell autoreactivity was tested using a combinatorial HLA multimer technology measuring a range of epitopes of islet autoantigens and neoantigen INS-DRiP. INS-DRiP expression in human pancreas and insulinoma sections was tested by immunohistochemistry. Results: Here we report the induction of islet autoimmunity to INS-DRiP and diabetes after ICI treatment and successful tumor remission. Following ICI treatment, T cells of the cancer patient were primed against INS-DRiP among other diabetogenic antigens, while there was no sign of autoimmunity to this neoantigen before ICI treatment. Next, we demonstrated the expression of INS-DRiP as neoantigen in both pancreatic islets and insulinoma by staining with a monoclonal antibody to INS-DRiP. Discussion: These results bridge cancer and T1D as two sides of the same coin and point to neoantigen expression in normal islets and insulinoma that may serve as target of both islet autoimmunity and tumor-related autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinoma , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Autoimunidade/genética , Insulinoma/genética , Insulinoma/terapia , Insulinoma/complicações , Autoantígenos , Insulina , Epitopos , Imunoterapia/métodos
2.
Sci Rep ; 14(1): 8315, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594375

RESUMO

Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerância à Glucose , Diabetes Autoimune Latente em Adultos , Adulto , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Autoimune Latente em Adultos/genética , Microbioma Gastrointestinal/genética , Adenosina Desaminase , RNA Ribossômico 16S/genética , Peptídeos e Proteínas de Sinalização Intercelular , Insulina
3.
HLA ; 103(4): e15446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575369

RESUMO

This family-based study was conducted in a group of Iranians with Type 1 diabetes (T1D) to investigate the transmission from parents of risk and non-risk HLA alleles and haplotypes, and to estimate the genetic risk score for this disease within this population. A total of 240 T1D subjects including 111 parent-child trios (111 children with T1D, 133 siblings, and 222 parents) and 330 ethnically matched healthy individuals were recruited. High-resolution HLA typing for DRB1/DQB1 loci was performed for all study subjects (n = 925) using polymerase chain reaction-sequence-specific oligonucleotide probe method. The highest predisposing effect on developing T1D was conferred by the following haplotypes both in all subjects and in probands compared to controls: DRB1*04:05-DQB1*03:02 (Pc = 2.97e-06 and Pc = 6.04e-10, respectively), DRB1*04:02-DQB1*03:02 (Pc = 5.94e-17 and Pc = 3.86e-09, respectively), and DRB1*03:01-DQB1*02:01 (Pc = 8.26e-29 and Pc = 6.56e-16, respectively). Conversely, the major protective haplotypes included DRB1*13:01-DQB1*06:03 (Pc = 6.99e-08), DRB1*15:01-DQB1*06:02 (Pc = 2.97e-06) in the cases versus controls. Also, DRB1*03:01-DQB1*02:01/DRB1*04:02|05-DQB1*03:02 and DRB1*03:01-DQB1*02:01/DRB1*03:01-DQB1*02:01 diplotypes conferred the highest predisposing effect in the cases (Pc = 8.65e-17 and Pc = 6.26e-08, respectively) and in probands (Pc = 5.4e-15 and Pc = 0.001, respectively) compared to controls. Transmission disequilibrium test showed that the highest risk was conferred by DRB1*04:02-DQB1*03:02 (Pc = 3.26e-05) and DRB1*03:01-DQB1*02:01 (Pc = 1.78e-12) haplotypes and the highest protection by DRB1*14:01-DQB1*05:03 (Pc = 8.66e-05), DRB1*15:01-DQB1*06:02 (Pc = 0.002), and DRB1*11:01-DQB1*03:01 (Pc = 0.0003) haplotypes. Based on logistic regression analysis, carriage of risk haplotypes increased the risk of T1D development 24.5 times in the Iranian population (p = 5.61e-13). Also, receiver operating characteristic curve analysis revealed a high predictive power of those risk haplotypes in discrimination of susceptible from healthy individuals (area under curve: 0.88, p = 5.5e-32). Our study highlights the potential utility of genetic risk assessment based on HLA diplotypes for predicting T1D risk in individuals, particularly among family members of affected children in our population.


Assuntos
Diabetes Mellitus Tipo 1 , População do Oriente Médio , Humanos , Diabetes Mellitus Tipo 1/genética , Cadeias HLA-DRB1/genética , Haplótipos , Irã (Geográfico)/epidemiologia , Frequência do Gene , Alelos , Cadeias beta de HLA-DQ/genética , Predisposição Genética para Doença
5.
Autoimmunity ; 57(1): 2330392, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515381

RESUMO

BACKGROUND: Despite growing knowledge regarding the pathogenesis of autoimmune diseases (ADs) onset, the current treatment remains unsatisfactory. This study aimed to identify innovative therapeutic targets for ADs through various analytical approaches. RESEARCH DESIGN AND METHODS: Utilizing Mendelian randomization, Bayesian co-localization, phenotype scanning, and protein-protein interaction network, we explored potential therapeutic targets for 14 ADs and externally validated our preliminary findings. RESULTS: This study identified 12 circulating proteins as potential therapeutic targets for six ADs. Specifically, IL12B was judged to be a risk factor for ankylosing spondylitis (p = 1.61E - 07). TYMP (p = 6.28E - 06) was identified as a protective factor for ulcerative colitis. For Crohn's disease, ERAP2 (p = 4.47E - 14), HP (p = 2.08E - 05), and RSPO3 (p = 6.52E - 07), were identified as facilitators, whereas FLRT3 (p = 3.42E - 07) had a protective effect. In rheumatoid arthritis, SWAP70 (p = 3.26E - 10), SIGLEC6 (p = 2.47E - 05), ISG15 (p = 3.69E - 05), and FCRL3 (p = 1.10E - 10) were identified as risk factors. B4GALT1 (p = 6.59E - 05) was associated with a lower risk of Type 1 diabetes (T1D). Interestingly, CTSH was identified as a protective factor for narcolepsy (p = 1.58E - 09) but a risk factor for T1D (p = 7.36E - 11), respectively. External validation supported the associations of eight of these proteins with three ADs. CONCLUSIONS: Our integrated study identified 12 potential therapeutic targets for ADs and provided novel insights into future drug development for ADs.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Proteoma , Diabetes Mellitus Tipo 1/genética , Teorema de Bayes , Análise da Randomização Mendeliana , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Estudo de Associação Genômica Ampla , Aminopeptidases
6.
Genome Med ; 16(1): 45, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539228

RESUMO

BACKGROUND: Type 1 diabetes mellitus (T1DM) is a prototypic endocrine autoimmune disease resulting from an immune-mediated destruction of pancreatic insulin-secreting ß  cells. A comprehensive immune cell phenotype evaluation in T1DM has not been performed thus far at the single-cell level. METHODS: In this cross-sectional analysis, we generated a single-cell transcriptomic dataset of peripheral blood mononuclear cells (PBMCs) from 46 manifest T1DM (stage 3) cases and 31 matched controls. RESULTS: We surprisingly detected profound alterations in circulatory immune cells (1784 dysregulated genes in 13 immune cell types), far exceeding the count in the comparator systemic autoimmune disease SLE. Genes upregulated in T1DM were involved in WNT signaling, interferon signaling and migration of T/NK cells, antigen presentation by B cells, and monocyte activation. A significant fraction of these differentially expressed genes were also altered in T1DM pancreatic islets. We used the single-cell data to construct a T1DM metagene z-score (TMZ score) that distinguished cases and controls and classified patients into molecular subtypes. This score correlated with known prognostic immune markers of T1DM, as well as with drug response in clinical trials. CONCLUSIONS: Our study reveals a surprisingly strong systemic dimension at the level of immune cell network in T1DM, defines disease-relevant molecular subtypes, and has the potential to guide non-invasive test development and patient stratification.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Análise da Expressão Gênica de Célula Única
7.
Front Endocrinol (Lausanne) ; 15: 1331012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549765

RESUMO

Aim: The pathogenesis of chronic diabetes complications has oxidative stress as one of the major elements, and single-nucleotide polymorphisms (SNPs) in genes belonging to antioxidant pathways modulate susceptibility to these complications. Considering that melatonin is a powerful antioxidant compound, our aim was to explore, in a longitudinal cohort study of type 1 diabetes (T1D) individuals, the association of microvascular complications and SNPs in the gene encoding melatonin receptor 1A (MTNR1A). Methods: Eight SNPs in MTNR1A were genotyped in 489 T1D individuals. Besides cross-sectional analyses of SNPs with each one of the microvascular complications (distal polyneuropathy, cardiovascular autonomic neuropathy, retinopathy, and diabetic kidney disease), a longitudinal analysis evaluated the associations of SNPs with renal function decline in 411 individuals followed up for a median of 8 years. In a subgroup of participants, the association of complications with urinary 6-sulfatoxymelatonin (aMT6s) concentration was investigated. Results: The group of individuals with a renal function decline ≥ 5 mL min-1 1.73 m-2 year-1 presented a higher frequency of the A allele of rs4862705 in comparison with nondecliners, even after adjustment for confounding variables (OR = 1.84, 95% CI = 1.20-2.82; p = 0.0046). No other significant associations were found. Conclusions: This is the first study showing an association between a variant in a gene belonging to the melatonin system and renal function decline in the diabetic setting.


Assuntos
Diabetes Mellitus Tipo 1 , Melatonina , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Antioxidantes , Receptores de Melatonina , Estudos Transversais , Estudos Longitudinais , Rim
8.
Diabetes Care ; 47(5): 826-834, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498185

RESUMO

OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS: First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Soroconversão , Genótipo , Haplótipos , Progressão da Doença , Cadeias HLA-DRB1/genética , Cadeias beta de HLA-DQ/genética , Alelos , Frequência do Gene
10.
Lupus ; 33(4): 403-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407846

RESUMO

OBJECTIVE: Interleukin-18 (IL-18) is a proinflammatory cytokine. This study aims to determine whether there is a causal relationship between circulating IL-18 concentrations and the risk of inflammatory and autoimmune diseases. METHODS: We collected significant single nucleotide polymorphisms (SNPs) associated with circulating IL-18 levels (p < 5 × 10-8) as instrumental variables (IVs) from a genome-wide association study (GWAS) involving 21,758 individuals of European descent. We mainly employed the inverse-variance weighed (IVW) method of two-sample Mendelian randomization (TSMR) analysis to estimate the causality of circulating IL-18 levels on inflammatory and autoimmune diseases. RESULTS: The IVW method results showed evidence of a causal relationship between IL-18 and the risk of systemic lupus erythematosus (SLE) (OR = 1.32; 95% CI 1.15, 1.50; p < .001) and type 1 diabetes (T1D) (OR = 1.22; 95% CI 1.06, 1.42; p = .007) in individuals of European ancestry. No significant heterogeneity or horizontal pleiotropy for SLE and T1D was detected. The sensitivity analysis, which involved removing confounding SNP, produced similar results for SLE and T1D. The results of sensitivity analysis using leave-one-out method indicated no single SNP significantly influenced the analysis results. However, we did not find any significant findings for multiple sclerosis, psoriasis, asthma, and osteoarthritis. CONCLUSIONS: Our analyses suggest that circulating IL-18 is significantly related to SLE and T1D and may serve as a potential target for the treatment of these diseases.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Lúpus Eritematoso Sistêmico , Humanos , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Interleucina-18/genética , Lúpus Eritematoso Sistêmico/genética
11.
J Pediatr Gastroenterol Nutr ; 78(2): 295-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374560

RESUMO

OBJECTIVES: Infections in early childhood have been associated with risk of celiac disease (CD) and type 1 diabetes (T1D). We investigated whether this is driven by susceptibility genes for autoimmune disease by comparing infection frequency by genetic susceptibility variants for CD or T1D. METHODS: We genotyped 373 controls and 384 children who developed CD or T1D in the population-based Norwegian Mother, Father and Child Cohort study (MoBa) study for human leukocyte antigen (HLA)-DQ, FUT2, SH2B3, and PTPN22, and calculated a weighted non-HLA genetic risk score (GRS) for CD and T1D based on over 40 SNPs. Parents reported infections in questionnaires when children were 6 and 18 months old. We used negative binomial regression to estimate incidence rate ratio (IRR) for infections by genotype. RESULTS: HLA genotypes for CD and T1D or non-HLA GRS for T1D were not associated with infections. The non-HLA GRS for CD was associated with a nonsignificantly lower frequency of infections (aIRR: 0.95, 95% CI: 0.87-1.03 per weighted allele score), and significantly so when restricting to healthy controls (aIRR: 0.89, 0.81-0.99). Participants homozygous for rs601338(A;A) at FUT2, often referred to as nonsecretors, had a nonsignificantly lower risk of infections (aIRR: 0.91, 95% CI: 0.83-1.01). SH2B3 and PTPN22 genotypes were not associated with infections. The association between infections and risk of CD (OR: 1.15 per five infections) was strengthened after adjustment for HLA genotype and non-HLA GRS (OR: 1.24). CONCLUSIONS: HLA variants and non-HLA GRS conferring susceptibility for CD were not associated with increased risk of infections in early childhood and is unlikely to drive the observed association between infections and risk of CD or T1D in many studies.


Assuntos
Doença Celíaca , Diabetes Mellitus Tipo 1 , Criança , Feminino , Humanos , Pré-Escolar , Lactente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Doença Celíaca/complicações , Estudos de Coortes , Genótipo , Predisposição Genética para Doença , Antígenos HLA-DQ/genética , 60488 , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética
12.
Sci Rep ; 14(1): 4485, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396205

RESUMO

This study investigates impaired awareness of hypoglycaemia (IAH), a complication of insulin therapy affecting 20-40% of individuals with type 1 diabetes. The exact pathophysiology is unclear, therefore we sought to identify metabolic signatures in IAH to elucidate potential pathophysiological pathways. Plasma samples from 578 individuals of the Dutch type 1 diabetes biomarker cohort, 67 with IAH and 108 without IAH (NAH) were analysed using the targeted metabolomics Biocrates AbsoluteIDQ p180 assay. Eleven metabolites were significantly associated with IAH. Genome-wide association studies of these 11 metabolites identified significant single nucleotide polymorphisms (SNPs) in C22:1-OH and phosphatidylcholine diacyl C36:6. After adjusting for the SNPs, 11 sphingomyelins and phosphatidylcholines were significantly higher in the IAH group in comparison to NAH. These metabolites are important components of the cell membrane and have been implicated to play a role in cell signalling in diabetes. These findings demonstrate the potential role of phosphatidylcholine and sphingomyelins in IAH.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Esfingomielinas , Estudo de Associação Genômica Ampla , Hipoglicemia/genética , Hipoglicemia/metabolismo , Fosfatidilcolinas , Conscientização/fisiologia
13.
Nat Cell Biol ; 26(3): 421-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409327

RESUMO

Type 1 diabetes (T1D) is characterized by the destruction of pancreatic ß-cells. Several observations have renewed the interest in ß-cell RNA sensors and editors. Here, we report that N6-methyladenosine (m6A) is an adaptive ß-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in ß-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hypermethylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-ßH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in ß-cells delayed diabetes progression in the non-obese diabetic mouse model of T1D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human ß-cells. Collectively, we report that m6A regulates the innate immune response at the ß-cell level during the onset of T1D in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animais , Humanos , Camundongos , Adenosina Desaminase/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Imunidade Inata , Células Secretoras de Insulina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredução
14.
Front Immunol ; 15: 1358459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404576

RESUMO

Regulatory T lymphocytes expressing the transcription factor Foxp3 (Tregs) play an important role in the prevention of autoimmune diseases and other immunopathologies. Aberrations in Treg-mediated immunosuppression are therefore thought to be involved in the development of autoimmune pathologies, but few have been documented. Recent reports indicated a central role for Tregs developing during the neonatal period in the prevention of autoimmune pathology. We therefore investigated the development of Tregs in neonatal NOD mice, an important animal model for autoimmune type 1 diabetes. Surprisingly, we found that, as compared with seven other commonly studied inbred mouse strains, in neonatal NOD mice, exceptionally large proportions of developing Tregs express high levels of GITR and PD-1. The latter phenotype was previously associated with high Treg autoreactivity in C57BL/6 mice, which we here confirm for NOD animals. The proportions of newly developing GITRhighPD-1+ Tregs rapidly drop during the first week of age. A genome-wide genetic screen indicated the involvement of several diabetes susceptibility loci in this trait. Analysis of a congenic mouse strain confirmed that Idd5 contributes to the genetic control of GITRhighPD-1+ Treg development in neonates. Our data thus demonstrate an intriguing and paradoxical correlation between an idiosyncrasy in Treg development in NOD mice and their susceptibility to type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Camundongos Endogâmicos NOD , Linfócitos T Reguladores , Receptor de Morte Celular Programada 1/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição
15.
Front Endocrinol (Lausanne) ; 15: 1335435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344660

RESUMO

Type 1 diabetes (T1D) is a complex metabolic autoimmune disorder that affects millions of individuals worldwide and often leads to significant comorbidities. However, the precise trigger of autoimmunity and disease onset remain incompletely elucidated. This integrative perspective article synthesizes the cumulative role of gene-environment interaction in the pathophysiology of T1D. Genetics plays a significant role in T1D susceptibility, particularly at the major histocompatibility complex (MHC) locus and cathepsin H (CTSH) locus. In addition to genetics, environmental factors such as viral infections, pesticide exposure, and changes in the gut microbiome have been associated with the development of T1D. Alterations in the gut microbiome impact mucosal integrity and immune tolerance, increasing gut permeability through molecular mimicry and modulation of the gut immune system, thereby increasing the risk of T1D potentially through the induction of autoimmunity. HLA class II haplotypes with known effects on T1D incidence may directly correlate to changes in the gut microbiome, but precisely how the genes influence changes in the gut microbiome, and how these changes provoke T1D, requires further investigations. These gene-environment interactions are hypothesized to increase susceptibility to T1D through epigenetic changes such as DNA methylation and histone modification, which in turn modify gene expression. There is a need to determine the efficacy of new interventions that target these epigenetic modifications such as "epidrugs", which will provide novel avenues for the effective management of T1D leading to improved quality of life of affected individuals and their families/caregivers.


Assuntos
Diabetes Mellitus Tipo 1 , Interação Gene-Ambiente , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/epidemiologia , Qualidade de Vida , Suscetibilidade a Doenças , Epigênese Genética
16.
FASEB J ; 38(3): e23448, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305779

RESUMO

Diabetes causes a range of complications that can affect multiple organs. Hyperglycemia is an important driver of diabetes-associated complications, mediated by biological processes such as dysfunction of endothelial cells, fibrosis, and alterations in leukocyte number and function. Here, we dissected the transcriptional response of key cell types to hyperglycemia across multiple tissues using single-cell RNA sequencing (scRNA-seq) and identified conserved, as well as organ-specific, changes associated with diabetes complications. By studying an early time point of diabetes, we focus on biological processes involved in the initiation of the disease, before the later organ-specific manifestations had supervened. We used a mouse model of type 1 diabetes and performed scRNA-seq on cells isolated from the heart, kidney, liver, and spleen of streptozotocin-treated and control male mice after 8 weeks and assessed differences in cell abundance, gene expression, pathway activation, and cell signaling across organs and within organs. In response to hyperglycemia, endothelial cells, macrophages, and monocytes displayed organ-specific transcriptional responses, whereas fibroblasts showed similar responses across organs, exhibiting altered metabolic gene expression and increased myeloid-like fibroblasts. Furthermore, we found evidence of endothelial dysfunction in the kidney, and of endothelial-to-mesenchymal transition in streptozotocin-treated mouse organs. In summary, our study represents the first single-cell and multi-organ analysis of early dysfunction in type 1 diabetes-associated hyperglycemia, and our large-scale dataset (comprising 67 611 cells) will serve as a starting point, reference atlas, and resource for further investigating the events leading to early diabetic disease.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Camundongos , Animais , Masculino , Diabetes Mellitus Tipo 1/genética , Células Endoteliais , Estreptozocina/toxicidade , Camundongos Endogâmicos C57BL , Hiperglicemia/genética , Análise de Sequência de RNA
17.
Gene ; 906: 148222, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331118

RESUMO

BACKGROUND: Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease characterized by recurring fever, erythema, joint pain, and abdominal discomfort during acute episodes. While FMF patients typically share MEFV gene mutations, they display varying clinical manifestations, suggesting the involvement of modifying genes, epigenetic mechanisms, or environmental factors. G protein regulator signal 10 (RGS10), a member of the RGS protein family, exhibits anti-inflammatory effects in autoinflammatory diseases. There are no studies on the role of plays in FMF pathogenesis or histone modification in FMF. AIMS: This study aimed to shed light on the epigenetic regulation of FMF from several perspectives. The relationship between RGS10 DNA hypermethylation in FMF clinical parameters and the regulation of 22 histone modifications were examined in FMF attack patients and the control group. METHODS: Sixty FMF (remission/attack) and thirty healthy individuals were included in the study. First, RNA was isolated from the blood of patients/controls, and the expression of RGS10 was examined. Then, DNA was isolated from the patients, and gene-specific hypermethylation was investigated using the bisulfite conversion method. Finally, histone extraction was performed for FMF patients and controls and 22 histone H3 modifications were determined. In addition, using ADEX bioinformatics tools, RGS10 expression and methylation profiles were detected in different autoinflammatory diseases. RESULTS: This study indicate that RGS10 expression decreased in attack-free/attack patients than control, attributed to DNA methylation. In addition, there were a positive correlation between FMF patients and attack, WBC, neutrophil, MCHC and MPV. Moreover, higher H3K4 me3, H3K9 me2, and H3K14ac levels were observed in patients with FMF attacks. This research also showed a consistent decrease in RGS10 expression in patients with SjS, SSc, and T1D compared with controls. I also obtained five prognosis-related CpGs (cg17527393, cg19653161, cg20445950, cg18938673 and cg13975098) of RGS10 in patients with SjS, RA, SSc, SLE and T1D. CONCLUSION: The present study provides insights into the complex relationship between RGS10, epigenetic modifications, and immune responses in FMF. While RGS10 may initially enhance immune responses, genetic mutations and epigenetic changes associated with FMF acute episode may override this regulatory effect, resulting in increased inflammation and clinical symptoms. Moreover, our study revealed elevated levels of specific histone modifications in the context of FMF, suggesting significant epigenetic changes that could contribute to the disease pathogenesis. Understanding these associations opens new avenues for research and potential therapeutic interventions, potentially involving epigenetic therapies targeting histone modifications.


Assuntos
Diabetes Mellitus Tipo 1 , Febre Familiar do Mediterrâneo , Proteínas RGS , Humanos , Febre Familiar do Mediterrâneo/genética , Código das Histonas , Histonas/genética , Epigênese Genética , Diabetes Mellitus Tipo 1/genética , Inflamação/genética , DNA , Pirina/genética , Proteínas RGS/genética
18.
Free Radic Biol Med ; 214: 193-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369075

RESUMO

Diabetes mellitus (DM) is a widespread metabolic disease presenting with various complications, including spermatogenic dysfunction. However, the underlying mechanisms are still unclear. Ferroptosis, a novel type of programmed cell death, is associated with much metabolic diseases. Here, we investigated the role of ferroptosis in spermatogenic dysfunction of streptozotocin (STZ)-induced type 1 diabetic mice (diabetic mice), high glucose (HG)-treated GC-2 cells (HG cells) as well as testicular tissues of diabetic patients. We found an accumulation of iron, elevated malondialdehyde level and reduced glutathione level in the testis tissues of diabetic mice and HG cells. Histological examination showed a decrease in spermatogenic cells and spermatids within the seminiferous tubules as well as mitochondrial shrinkage in the testis tissues of diabetic mice. Ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, mitigated ferroptosis-associated iron overload, lipid peroxidation accumulation and spermatogenic dysfunction of diabetic mice. Furthermore, we observed a downregulation of GPX4, FTL and SLC7A11 in diabetic mice and HG cells. Fer-1 treatment and GPX4 overexpression counteracted the effects of HG on cell viability, reactive oxygen species, lipid peroxidation and glutathione via inhibition of ferroptosis. Moreover, we found an elevation of ferroptosis in testicular tissues of diabetic patients. Taken together, our results identify the crucial role of ferroptosis in diabetic spermatogenic dysfunction and ferroptosis may be a promising therapeutic target to improve spermatogenesis in diabetic patients.


Assuntos
Cicloexilaminas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ferroptose , Fenilenodiaminas , Humanos , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Experimental/genética , Ferroptose/genética , Espermatogênese/genética , Glutationa
19.
Genome Med ; 16(1): 31, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355597

RESUMO

BACKGROUND: Population screening for risk of type 1 diabetes (T1D) has been proposed to identify those with islet autoimmunity (presence of islet autoantibodies). As islet autoantibodies can be transient, screening with a genetic risk score has been proposed as an entry into autoantibody testing. METHODS: Children were recruited from eight general pediatric and specialty clinics across Virginia with diverse community settings. Recruiters in each clinic obtained informed consent/assent, a medical history, and a saliva sample for DNA extraction in children with and without a history of T1D. A custom genotyping panel was used to define T1D genetic risk based upon associated SNPs in European- and African-genetic ancestry. Subjects at "high genetic risk" were offered a separate blood collection for screening four islet autoantibodies. A follow-up contact (email, mail, and telephone) in one half of the participants determined interest and occurrence of subsequent T1D. RESULTS: A total of 3818 children aged 2-16 years were recruited, with 14.2% (n = 542) having a "high genetic risk." Of children with "high genetic risk" and without pre-existing T1D (n = 494), 7.0% (34/494) consented for autoantibody screening; 82.4% (28/34) who consented also completed the blood collection, and 7.1% (2/28) of them tested positive for multiple autoantibodies. Among children with pre-existing T1D (n = 91), 52% (n = 48) had a "high genetic risk." In the sample of children with existing T1D, there was no relationship between genetic risk and age at T1D onset. A major factor in obtaining islet autoantibody testing was concern over SARS-CoV-2 exposure. CONCLUSIONS: Minimally invasive saliva sampling implemented using a genetic risk score can identify children at genetic risk of T1D. Consent for autoantibody screening, however, was limited largely due to the SARS-CoV-2 pandemic and need for blood collection.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Virginia , Fatores de Risco , Autoanticorpos/genética , Autoimunidade/genética , 60488
20.
Nat Commun ; 15(1): 1337, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351043

RESUMO

Tyrosine kinase 2 (TYK2), a member of the JAK family, has attracted attention as a potential therapeutic target for autoimmune diseases. However, the role of TYK2 in CD8+ T cells and autoimmune type 1 diabetes (T1D) is poorly understood. In this study, we generate Tyk2 gene knockout non-obese diabetes (NOD) mice and demonstrate that the loss of Tyk2 inhibits the development of autoreactive CD8+ T-BET+ cytotoxic T lymphocytes (CTLs) by impairing IL-12 signaling in CD8+ T cells and the CD8+ resident dendritic cell-driven cross-priming of CTLs in the pancreatic lymph node (PLN). Tyk2-deficient CTLs display reduced cytotoxicity. Increased inflammatory responses in ß-cells with aging are dampened by Tyk2 deficiency. Furthermore, treatment with BMS-986165, a selective TYK2 inhibitor, inhibits the expansion of T-BET+ CTLs, inflammation in ß-cells and the onset of autoimmune T1D in NOD mice. Thus, our study reveals the diverse roles of TYK2 in driving the pathogenesis of T1D.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 1 , Camundongos , Animais , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Diabetes Mellitus Tipo 1/genética , TYK2 Quinase/genética , Camundongos Knockout , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...